UV Light May Lead Way to New Treatment for MS and Inflammation

UV Light May Lead Way to New Treatment for MS and Inflammation

Researchers have found a way to harness inflammation with the help of ultraviolet (UV) light, making it possible to design an anti-inflammatory treatment that is more specific and causes fewer side effects.

If this approach can be developed for clinical treatment, it likely will have a large impact on the lives of people with multiple sclerosis and other inflammatory conditions.

The study, “Chemical optogenetic modulation of inflammation and immunity,” was published in the journal Chemical Science.

HDACs (histone deacetylases) are molecules driving inflammation and controlling a range of other processes. Drugs that block HDACs are being investigated in conditions that include neurodegeneration and cancer, but their role in inflammation is only beginning to be explored.

Since HDACs exist in tissues throughout the body, a blocker often interrupts other enzyme actions than the one intended, resulting in unwanted side effects. To get around the problem, researchers at Cornell University designed a molecule that can activate a HDAC blocker using UV light.

“Currently, there aren’t a lot of tools that are able to manipulate the immune system in a spatio-temporal fashion,” Pamela Chang, an assistant professor of microbiology and immunology, and the study’s senior author, said in a news release.

The team used an existing blocker and covered the part of the drug that interacts with HDAC with an additional molecule. This addition is set lose when the compound is exposed to UV light, allowing the drug to block HDAC.

“If you turned off all the HDACs in the body, you would probably be hitting a lot of pathways that you didn’t want to turn off,” said Chang. “We can control when and where we turn off the HDACs using light. The idea is that you can actually target the tissue that has chronic inflammation and regulate it by selectively inhibiting HDACs in the tissue that’s affected.”

In this way, the side effects of a treatment can be minimized.

So far, researchers tested the new compound in lab-grown cells, where UV-triggered drug actions reduced the levels of inflammatory molecules. The team also showed that the compound did not harm the cells.

“We are pushing the forefront of developing new technologies to control inflammation and the immune system, with the ultimate goal of being able to study these biological pathways and perhaps develop therapies for inflammatory diseases,” Chang concluded.

By Magdalena Kegel

Multiple Sclerosis News Today

CMSC Disclaimer

The industry news information and articles are for informational purposes only, and are not intended to represent any trends, partnerships, commitments, or research of the Consortium of MS Centers or any of it's members in any way whatsoever, nor should any party be libel in any way to the reader or to any other person, firm or corporation reading this industry news section. Although the CMSC site includes links providing direct access to other Internet sites, CMSC takes no responsibility for the content or information contained on those other sites, and does not exert any editorial or other control over those other sites. CMSC is providing information and services on the Internet as a benefit and service in furtherance of CMSC's nonprofit and tax-exempt status. CMSC makes no representations about the suitability of this information and these services for any purpose.

Elizabeth Porco

Comments are closed.

CMSC provides leadership in clinical research and education; develops vehicles to share information and knowledge among members; disseminates information to the health care community and to persons affected by MS.

Contact Us
Contact Us





I have a question about

First

Last




Feel Free To contact Us
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam molestie, tellus id pellen tesque feugiat, sem sem cursus orci, a placerat ante ante nec massa. consectetuer adipiscing elit.

+1-222-333-4444

New York, NY 10123 USA

Mon - Sat 9:00 AM