Suppressing immune disorders in multiple sclerosis

Suppressing immune disorders in multiple sclerosis

There may be an easy way to treat immune related disorders in mice models of multiple sclerosis (MS), according to a study published in the Journal of Immunology Research.

Researchers from the University of Florida used an infusion of spleen cells in combination with an autoantigen to block MS in mice models. The process used attaches disease related protein fragments, the autoantigens, to spleen cells to prevent MS. In mice models, MS causes brain and spinal cord inflammation, similar to human MS. The process was able to “dramatically reverse” MS in its early stages in the mice, the researchers said.

The researchers acknowledged that this approach is not new in its ability to treat MS, but this study is unique because it utilized the autoantigens in combination with a chemical called sulfo SMCC, or SMCC. SMCC is already approved by the U.S. Food and Drug Administration (FDA) for its use in delivering various drugs in clinical trials, the researchers continued. 

This method, using SMCC, is faster and better than using other autoantigen methods like EDCI, because it is easier and less toxic to the cells, the researchers commented. Over a period of 2 months, the study authors found that the spleen cells injected into the mice had prevented MS from developing, they explained in a press release. The same approach reversed the early stages of the mice’s MS. The researchers attributed this reversal and prevention to the spleen cell autoantigen and said that the combination boosts the immune system and suppresses demyelination, found in various autoimmune diseases.

The investigators said that although mice models of MS aren’t exactly similar to human cases, there is enough overlap that the research is easily translatable to human cases. There are no clinical trials scheduled for the immediate future, but the researchers believe there is potential for making the transition from mice models to clinical trials soon – especially because the FDA already approved SMCC for drug delivery systems in trials such as these. 

In human cases, the researchers explained that the process would work similarly. They hypothesized that the autoantigens would match with peripheral white blood cells to be delivered by transfusions and that the same benefits as with the mice models would be seen in human models because the two diseases are so similar immunologically and pathologically. 

Rachel Lutz

CMSC Disclaimer

The industry news information and articles are for informational purposes only, and are not intended to represent any trends, partnerships, commitments, or research of the Consortium of MS Centers or any of it's members in any way whatsoever, nor should any party be libel in any way to the reader or to any other person, firm or corporation reading this industry news section. Although the CMSC site includes links providing direct access to other Internet sites, CMSC takes no responsibility for the content or information contained on those other sites, and does not exert any editorial or other control over those other sites. CMSC is providing information and services on the Internet as a benefit and service in furtherance of CMSC's nonprofit and tax-exempt status. CMSC makes no representations about the suitability of this information and these services for any purpose.

Elizabeth Porco

Comments are closed.

CMSC provides leadership in clinical research and education; develops vehicles to share information and knowledge among members; disseminates information to the health care community and to persons affected by MS.

Contact Us
Contact Us





I have a question about

First

Last




Feel Free To contact Us
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nam molestie, tellus id pellen tesque feugiat, sem sem cursus orci, a placerat ante ante nec massa. consectetuer adipiscing elit.

+1-222-333-4444

New York, NY 10123 USA

Mon - Sat 9:00 AM